
On The Semantic Intricacies of Conditioning
Friedrich Gretz, Nils Jansen, Benjamin Lucien Kaminski, Joost-Pieter Katoen and Federico Olmedo

RWTH Aachen University, Aachen, Germany

Abstract—We discuss semantic intricacies of conditioning, a
main feature in probabilistic programming, and propose how to
deal with these issues in an operational way and in a weakest
pre-condition semantics. This includes the interplay between
conditioning and possible non-termination as well as between
conditioning and non-determinism. We propose a program trans-
formation that eliminates conditioning from programs at the
expense of introducing loops.

Introduction: Many probabilistic programming
languages exist including Probabilistic C, Rely, Figaro,
ProbLog, Tabular, and R2 [1]. Probabilistic programs are
normal-looking programs describing posterior probability
distributions. They are sequential programs having two
main features: (1) sampling from probability distributions,
and (2) the ability to condition values of variables in
a program. Conditioning allows for adding information
about observed events into the program that may influence
the posterior distribution. The semantics of probabilistic
programs without conditioning is rather well–understood.
Denotational [2], weakest (liberal) precondition (w(l)p)
[3] and operational semantics [4] have, for instance, been
provided. However, covering conditioning semantically
imposes several challenging problems. We discuss these
intricacies in the setting of a simple imperative language,
namely a probabilistic variant of Dijkstra’s guarded command
language. Admittedly, this is not a language used nowadays
in probabilistic programming, but due to its simplicity it can
be considered as a “core” language in which the semantic
intricacies of conditioning can be properly illustrated. Its main
restriction is that it does not support continuous distributions.
The problems discussed here do, however, also occur when
considering such distributions. On the other hand, it contains
a non-deterministic choice which is essential for considering
probabilistic programs at different abstraction levels and
for including multi-threading. We focus on conditioning as
expressed by means of so-called observe statements [1], [5].

When to observe?: Consider the program snippet P

{x := 0} [1/2] {x := 1}; observe (x=1) ,

which assigns zero to the variable x with probability 1/2
(modeled by a probabilistic choice) while x is assigned one
with the same likelihood, after which we condition to the
outcome of x being one. The observe statement blocks
all invalid runs violating its condition and renormalizes the
probabilities of the remaining valid runs. The interpretation of
the program is the expected outcome conditioned on the valid
runs. For P , this yields the outcome one. Consider now:

{x := 0; observe (x=1)} [1/2] {x := 1; observe (x=1)}

The left branch of the probabilistic choice is infeasible. Is
this program equivalent to P ? We think they are. Setting an
infeasible program into context thus can render it feasible.

The interference with non–termination: Consider

x := 2 and {x := 2} [1/2] {abort} .

Both programs assign two to x, but the right one aborts with
probability 1/2. Should these two programs be considered
equivalent or not? Most semantics do not distinguish them, as
they assume programs to almost-surely terminate. This may
make sense for programs in certain application domains. But
can we really require a probabilistic programmer to write only
terminating programs? Sure, one can prevent a programmer
from writing programs containing abort statements, but one
cannot avoid divergence—loops may easily not terminate. We
take the position that termination is not an issue that is left
to the programmer.1 Semantics thus has to treat divergence.
In our proposal, both programs above are thus distinguished.

Observations inside loops: Consider the two programs:

1: repeat 1: repeat

2: x := 1 2: {x := 1} [1/2] {x := 0};
3: until (x = 0) 3: observe (x = 1)

4: until (x = 0)

The left program certainly diverges. For the right program,
things are not so clear any more: On the one hand, the only
non–terminating run is the one in which in every iteration x is
set to 1. This event of setting x infinitely often to 1, however,
has probability 0. So the probability of non–termination would
be 0. On the other hand, the global effect of the observe
statement within the loop is to condition on exactly this
event, which occurs with probability 0. Hence, the conditional
termination probability of the right program is undefined and
cannot be measured. Note that programs with (probabilistic)
assertions must be loop–free to avoid similar problems [6];
other approaches insist on the absence of diverging loops [7].

Notice that while in this sample program it is immediate
to see that the event to which we condition has probability
0, in general it might be highly non–trivial to identify this.
Demanding from a “probabilistic programmer” to condition
only to events with non–zero probability would thus be just
as (if not even more) far–fetched as requiring an “ordinary

1Almost-sure termination of probabilistic programs is “more undecidable”
than termination for ordinary programs; leaving this to the full responsibility
of a programmer is rather demanding.



programmer” to write only terminating programs. Therefore,
a semantics for conditioning has to take the possibility of
conditioning to zero–probability events into account. We
propose such a semantics; it distinguishes the two loopy
programs above.

The interference with non–determinism: The following
example blurs the situation even further. Consider the program:

1: repeat

2: {x := 1} [1/2] {x := 0};
3: {x := 1}� {observe (x = 1)}
4: until (x = 0)

This program first randomly sets x to 1 or 0. Then it either
sets x to 1 or conditions to the event that x was set to 1
in the previous probabilistic choice. The latter choice is
made non–deterministically and therefore the semantics of
the entire program is not clear: If in line 3, the oracle to
resolve the non–determinism always chooses x := 1, then
this results in certain non–termination. If, on the other hand,
the oracle always chooses observe (x = 1), then the
global effect of the observe statement is a conditioning to
this zero–probability event. Which behavior of the oracle
is more demonic? We take the point of view that certain
non–termination is a more well–behaved phenomenon than
conditioning to a zero–probability event. Therefore a demonic
oracle should prefer the latter.

Our proposal: We provide a semantics of a probabilistic
variant of Dijkstra’s guarded command language. This
includes probabilistic and non-deterministic choice, abortion
and conditioning by means of observe statements. (Our
semantics can be easily adapted to programming languages
that support sampling from arbitrary discrete distribution
functions.) Given that this language is rather basic our
semantics can act as a backbone for full-fledged imperative
probabilistic programming languages with conditioning. The
operational model is based on Markov decision processes. In
absence of non–determinism, this reduces to Markov chains.
The crux of our semantics is to distinguish the violation of
observe statements and possible divergence. The probability
that a given outcome is obtained is normalized with respect
to the probability that all observe statements are fulfilled.
The latter probability includes the possible diverging runs.

wp-Reasoning: We provide an alternative semantics
by generalizing the weakest pre-expectation semantics by
McIver and Morgan [3]. The soundness of the semantics
is investigated in two directions. The wp-semantics is
semantically equivalent to the operational model in the sense
that (roughly speaking) weakest pre-expectations correspond
to conditional expected rewards. Moreover, this semantics is
backward compatible with McIver and Morgan’s semantics

for programs without conditioning2; this does not apply to
alternative approaches such as R2 [1]. To be more precise,
this latter soundness result only holds for programs without
non-determinism. In fact, it turns out that combining both
non–determinism and conditioning cannot be treated in
the wp-semantics. The problem is that the resolution of
non-deterministic choices needs to depend on the context of
these choices, rendering a definition by structural induction
on programs—as is the standard approach for defining
wp-semantics—impossible.

Conditioning is syntactic sugar: Any program with
conditioning can be transformed into an equivalent program
without conditioning. This observation is not new, but due
to the treatment of possible divergence, in our setting the
transformation to eliminate conditioning is different and more
involved. Let P be program with observations. We transform
this program by repeatedly sampling executions from P
until the sampled execution satisfies all its observations. This
comes at the expense of introducing a loop. Details will be
presented at the workshop.

Discussion: We welcome a thorough discussion about the
semantics of conditioning. Even with just discrete probability
functions, there are various issues, as made clear in this note.
By presenting two consistent semantic views, we hope to
provide a good basis for discussion. Issues for discussion are,
amongst others:

• Is non-determinism an issue of interest?
• Should conditioning be allowed inside loops?
• How to treat non-terminating programs?
• Can we come up with rules of thumb to avoid some

problematic cases?

ACKNOWLEDGMENT

This work was supported by the Excellence Initiative of the
German federal and state government.

REFERENCES

[1] A. V. Nori, C. Hur, S. K. Rajamani, and S. Samuel, “R2: an efficient
MCMC sampler for probabilistic programs,” in Proc. of AAAI, 2014, pp.
2476–2482.

[2] D. Kozen, “Semantics of probabilistic programs,” J. Comput. Syst. Sci.,
vol. 22, no. 3, pp. 328–350, 1981.

[3] A. McIver and C. Morgan, Abstraction, Refinement And Proof For
Probabilistic Systems. Springer, 2004.

[4] F. Gretz, J.-P. Katoen, and A. McIver, “Operational versus weakest pre-
expectation semantics for the probabilistic guarded command language,”
Perform. Eval., vol. 73, pp. 110–132, 2014.

[5] C.-K. Hur, A. V. Nori, S. K. Rajamani, and S. Samuel, “Slicing proba-
bilistic programs,” in Proc. of PLDI. ACM Press, 2014, pp. 133–144.

[6] A. Sampson, P. Panchekha, T. Mytkowicz, K. S. McKinley, D. Grossman,
and L. Ceze, “Expressing and verifying probabilistic assertions,” in Proc.
of PLDI. ACM, 2014, p. 14.

[7] A. Chakarov and S. Sankaranarayanan, “Expectation invariants for prob-
abilistic program loops as fixed points,” in Proc. of SAS, ser. LNCS, vol.
8723. Springer, 2014, pp. 85–100.

2Given that their semantics is backward compatible with Dijkstra’s guarded
command language, we consider this as a desirable property.

2


